Interactions between non-commutative algebraic geometry and skew PBW extensions

نویسندگان

  • Edward Orlando Latorre Acero
  • Oswaldo Lezama
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS

A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...

متن کامل

Universal property of skew P BW extensions

In this paper we prove the universal property of skew PBW extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew PBW extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Art...

متن کامل

Jacobson’s conjecture and skew PBW extensions

The aim of this paper is to compute the Jacobson’s radical of skew PBW extensions over domains. As a consequence of this result we obtain a direct relation between these extensions and the Jacobson’s conjecture, which implies that skew PBW extensions over domains satisfy this conjecture.

متن کامل

Noncommutative Geometry through Monoidal Categories I

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions...

متن کامل

The Dixmier-moeglin Equivalence for Twisted Homogeneous Coordinate Rings

Given a projective scheme X over a field k, an automorphism σ : X → X, and a σ-ample invertible sheaf L, one may form the twisted homogeneous coordinate ring B = B(X,L, σ), one of the most fundamental constructions in noncommutative projective algebraic geometry. We study the primitive spectrum of B, as well as that of other closely related algebras such as skew and skew-Laurent extensions of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016